Single Channel Music Sound Separation Based on Spectrogram Decomposition and Note Classification

نویسندگان

  • Wenwu Wang
  • Hafiz Mustafa
چکیده

Separating multiple music sources from a single channel mixture is a challenging problem. We present a new approach to this problem based on non-negative matrix factorization (NMF) and note classification, assuming that the instruments used to play the sound signals are known a priori. The spectrogram of the mixture signal is first decomposed into building components (musical notes) using an NMF algorithm. The Mel frequency cepstrum coefficients (MFCCs) of both the decomposed components and the signals in the training dataset are extracted. The mean squared errors (MSEs) between the MFCC feature space of the decomposed music component and those of the training signals are used as the similarity measures for the decomposed music notes. The notes are then labelled to the corresponding type of instruments by the K nearest neighbors (K-NN) classification algorithm based on the MSEs. Finally, the source signals are reconstructed from the classified notes and the weighting matrices obtained from the NMF algorithm. Simulations are provided to show the performance of the proposed system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Score-Informed Voice Separation For Piano Recordings

The decomposition of a monaural audio recording into musically meaningful sound sources or voices constitutes a fundamental problem in music information retrieval. In this paper, we consider the task of separating a monaural piano recording into two sound sources (or voices) that correspond to the left hand and the right hand. Since in this scenario the two sources share many physical propertie...

متن کامل

Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation

We present a novel method for blind separation of instruments in polyphonic music based on a non-negative matrix factor 2-D deconvolution algorithm. Using a model which is convolutive in both time and frequency we factorize a spectrogram representation of music into components corresponding to individual instruments. Based on this factorization we separate the instruments using spectrogram mask...

متن کامل

Optimal spectral transportation with application to music transcription

Many spectral unmixing methods rely on the non-negative decomposition of spectral data onto a dictionary of spectral templates. In particular, state-of-the-art music transcription systems decompose the spectrogram of the input signal onto a dictionary of representative note spectra. The typical measures of fit used to quantify the adequacy of the decomposition compare the data and template entr...

متن کامل

Single Channel Speech Music Separation Using Nonnegative Matrix Factorization with Sliding Windows and Spectral Masks

A single channel speech-music separation algorithm based on nonnegative matrix factorization (NMF) with sliding windows and spectral masks is proposed in this work. We train a set of basis vectors for each source signal using NMF in the magnitude spectral domain. Rather than forming the columns of the matrices to be decomposed by NMF of a single spectral frame, we build them with multiple spect...

متن کامل

Independent Subspace Analysis Using Locally Linear Embedding

While Independent Subspace Analysis provides a means of blindly separating sound sources from a single channel signal, it does have a number of problems. In particular the amount of information required for separation of sources varies with the signal. This is as a result of the variance-based nature of Principal Component Analysis, which is used for dimensional reduction in the Independent Sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010